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Micro-Simulation Model
for Assessing the Risk
of Vehicle–Pedestrian Road Accidents

GENNADY WAIZMAN,1 SHRAGA SHOVAL,2 and ITZHAK BENENSON1

1Department of Geography and Human Environment, Tel Aviv University, Tel Aviv, Israel
2Department of Industrial Engineering and Management, Ariel University, Ariel, Israel

Data on traffic accidents clearly point to road black spots, where the accident rate is always high. However, road safety
research is still far from understanding why these particular places on a road are risky. The reason is the lack of sufficient
knowledge on how pedestrians and drivers interact when facing a potentially dangerous traffic situation, and the lack of
an integrated framework that relates the data on human behavior to real-world traffic situations. We attempt to tackle this
problem by developing SAFEPED, a multi-agent microscopic three-dimensional (3D) simulation of vehicle and pedestrian
dynamics at a black spot. SAFEPED is a test platform for evaluating experimentally estimated drivers’ and pedestrians’
behavioral rules, and estimating accident risks in different traffic situations. It aims to analyze the design of existing and
future black spots and to assess alternative architectural and environmental solutions in order to identify maximally efficient
safety countermeasures.

Keywords Agent-Based Modeling; Black Spot; Spatially Explicit Modeling; Traffic Accidents

INTRODUCTION

Micro-Simulation of Road Accidents: From a Static
to a Dynamic View

Accident statistics reveal factors of risk and establish the
dependencies of accident rates on the characteristics and pa-
rameters of roads, vehicles, pedestrians, traffic, and the envi-
ronment at an accident location (Campbell, 2003; Chang, 2008;
Vlahogianni et al., 2012; Zegeer et al., 2005). However, statis-
tical models are inherently static, and are unable to reflect the
sequence of events that cause an accident (Gettman & Head,
2003). Their power for assessing and comparing the effects of
possible changes in the infrastructure or traffic conditions at the
dangerous location is thus inherently limited. Studies of black
spots—seemingly regular road locations with unexpectedly high
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Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/gits.

and stable accident rates—confirm that identifying and resolv-
ing safety threats requires an individual solution for each spot
(Gitelman et al., 2010).

Traffic engineers’ intuition is often sufficient for treatment
of problems related to common problems of black spots of a
certain type. Successful examples include the installation of
the several hundred countdown signals at pedestrian crossings
in San Francisco that reduced the number of pedestrian in-
juries caused by crashes with vehicles by 52% (Markowitz
et al., 2006), and the system for detecting pedestrians approach-
ing a crosswalk zone that warns drivers of pedestrian pres-
ence (Hakkert et al., 2002). In both examples, the effective-
ness of the safety measures was evaluated by comparing the
accident rates before and after the implementation of safety
measures.

However, failures in reducing accident rates at sites that have
been modified are often not reported. Black spots do not cease
to be black spots and traffic engineers still lack the tools for
assessing proposed safety measure changes to traffic regulations
and infrastructure of a specific spot (Gitelman et al., 2010).
Safety measures are costly to implement and may be successful
for one spot and unsuccessful for the other.
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64 G. WAIZMAN ET AL.

Dynamic simulation modeling of traffic accidents at a black
spot can provide a solution to the problem of safety measure
assessment. Using the model, the chain of events that caused
an accident can be investigated, and the reasons for and con-
sequences of risky behavior of drivers and pedestrians can
be understood. This article presents a pilot version of such a
model.

Field Studies of the Accident Microdynamics

During the last decade, a series of large-scale studies aimed
at developing reliable indicators of vehicle precrash conditions
was performed within the framework of the Intelligent Trans-
portation Systems (ITS) program of the U.S. Department of
Transportation. The research focused on “last second” urgent
maneuvering, and resulted in significant amounts of data, col-
lected during real-time observations of driver behavior and car
movement (Kiefer et al., 2003; Klauer et al., 2006a, 2006b), as
well as during simulator-based driving (Najm & Smith, 2004;
Smith et al., 2003). The on-road data include kinematic charac-
teristics of vehicles, real-time measurements of the distance to
other objects, and video of drivers’ behavior. In parallel, labora-
tory experiments provided meaningful data on drivers’ behavior
in potential accident scenarios, such as a lane-change maneuver
(Malta et al., 2009) or unexpected behavior of leading vehicles
(Smith et al., 2003).

Recent computer-based analysis of videos of road locations
provided essential knowledge on driver and pedestrian behavior
on the road. Video data provide the basis for modeling driver
and pedestrian decision making, for example, for estimating
the probability that a pedestrian would decide to cross the road
depending on the distance to an approaching car, its velocity,
and the road geometry (Sun et al., 2003; Papadimitriou et al.,
2009; Wang et al., 2010; Prato et al., 2012; Robin et al., 2010).
These models serve as building blocks for the dynamic model
of driver–pedestrian interactions on the road in preaccident and
accident situations.

Micromodeling of Vehicle–Pedestrian Conflict

The majority of micromodels of vehicle–pedestrian conflict
describe pedestrian decision making in respect to the potential
danger of a vehicle-related accident. Typically, logit models of
a pedestrian’s choice between two alternatives—to cross the
road or to wait until the car passes—are constructed, in which
the probability of crossing is related to the approaching vehi-
cle time gap, age of the pedestrian, the number of pedestrians
crossing in a group, and so on. Models of this kind provide
very likely predictions of pedestrians’ decisions (Schroeder &
Rouphail, 2011). Extensions of this approach include motorists’
yielding behavior (Papadimitriou et al., 2009; Sun et al., 2003)
and pedestrians’ jaywalking outside of crossing facilities (Wang
et al., 2010).

Detailed representation of several patterns of pedestrian
motion is studied in Robin et al. (2009). The cross-nested
logit model includes submodels for five patterns of pedestrian
behavior—constrained (collision avoidance, leader following),
and unconstrained (maintaining direction, turning toward desti-
nation, free flow acceleration). The model represents the change
in these patterns with respect to changes of motion speed and
direction.

Discreet choice models, however, do not address evolution
of conflict after the pedestrian, driver, or both have made their
decisions. This can be done with the dynamic modeling of
vehicle–pedestrian interactions, which is still underdeveloped
but has proved its usefulness in wide range of transportation
applications, such as the simulation of large-scale transporta-
tion systems (Balmer et al., 2004), of traffic signal control
(El-Tantawy et al., 2014), and of pedestrian–vehicle dynam-
ics in emergency situations (Zhang & Chang, 2013). Typically,
the dynamic models focus on either vehicle or pedestrian traffic
and avoid combining these two flows within the same model.
The major reasons are inherent behavioral differences between
pedestrians and drivers concerning route choice and compliance
with traffic regulations. Advanced models of vehicle traffic, such
as ArchiSim (Doniec et al., 2008; Ksontini at al., 2012), or VIS-
SIM, PARAMICS, SUMO, and Aimsun (Ishaque & Noland,
2008) focus on the vehicle flow while utilizing an intention-
ally simplified view of pedestrians. Models of pedestrian crowd
dynamics specify pedestrian interactions but ignore details of
vehicle traffic (Papadimitriou et al., 2009).

The model of pedestrians’ disobedience to traffic laws at
crosswalks (Zhang & Duan, 2007) is a rare example of a dy-
namic model of vehicle–pedestrian interactions. It combines the
Nagel–Schreckenberg Cellular Automata (CA) model of vehi-
cle flow (Nagel & Schreckenberg, 1992) and the pedestrian
submodel. The model demonstrates that while the total pedes-
trian volume is the most important factor affecting the capacity
of mixed traffic at crosswalks, occasional lawbreakers addition-
ally decrease traffic capacity. However, to represent vehicle flow,
the model partitions space into square cells of the size of sev-
eral meters. These cells are too large for adequate microscopic
representation of pedestrian motion in accidents.

In this article, we present SAFEPED—a high-resolution,
spatially explicit, dynamic simulation system for assessing the
safety of traffic environments at pedestrian crossings. SAFEPED
combines a continuous representation of space with the simu-
lated motion of drivers and pedestrians that utilizes comprehen-
sive robotic techniques of obstacle avoidance. We apply this
innovative approach for a universal description of mixed ve-
hicle/pedestrian motion in a continuous space for the study
of road safety at black spots. SAFEPED is a spatially ex-
plicit agent-based model that represents traffic spot infrastruc-
ture and moving objects in fine three-dimensional (3D) de-
tails, and operates at a high time resolution of 1/20th of a
second. Behavioral rules of SAFEPED agents—vehicles and
pedestrians—are based, when possible, on the experimental
data.

intelligent transportation systems vol. 19 no. 1 2014
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ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 65

SAFEPED, AN AGENT-BASED MODEL OF
VEHICLE-PEDESTRIAN INTERACTIONS

Agent-based (AB) techniques are especially convenient for
modeling vehicular–pedestrian conflict (Benenson & Torrens,
2004; Benenson et al., 2005). Direct simulation of the behav-
ior of agents (vehicles and pedestrians) acting within a precise
3D environment enables identifying risk factors and investigat-
ing the effectiveness of proposed safety measures. Scenarios
with different numbers of vehicles and pedestrians of vari-
ous kinds and behaviors can be investigated. Agents’ actions
and their outcome, for example, accidents, can be recorded
and analyzed. Results of experiments on the behavior of ve-
hicles and pedestrians can be directly interpreted in terms
of agents’ behavioral rules. SAFEPED motion behavior rules
exploit robotic approaches to real-time motion planning and
maneuvering in a dynamic environment (Fiorini & Shiller,
1998). The rules account for basic imperfections of human vi-
sual perception, limitations in pedestrian locomotion, and car
mobility.

The 3D Representation of Black Spots

SAFEPED is built on a precise 3D representation of a traffic
spot’s surface and infrastructure, including road borders, parked
vehicles, pedestrian crossings, buildings, trees, traffic lights and
signs. Figure 1 shows the trajectories of agents, with different
types of lines indicating the type of agent1 and agents’ priorities
in terms of the right of way.

SAFEPED Agents and Their Behavior

SAFEPED drivers and pedestrians behave autonomously,
according to a set of probabilistic behavioral rules. Each
agent—driver or pedestrian—is assigned with an agent’s pro-
file that includes height, width, velocity, steering, and accelera-
tion/deceleration capabilities.

Agents’ Motion at a Macro Level

Each SAFEPED agent tries to maintain its desired predefined
velocity, and aims to follow its predefined trajectory, as shown
in Figure 1. That is, we do not consider the entire sequence
of the behavioral decisions of pedestrians and drivers, but start
simulations from the moment when all agents participating in
the scene have already decided to move or to wait and have cho-
sen the trajectory of movement. However, in the vast majority
of situations, it is impossible to follow a predefined trajectory
because of other moving and/or stationary objects. In this case,
driver and pedestrian agents react, not necessarily adequately, to
the behavior of the other autonomous agents that they are able

1The figures in this article are shown in black and white (B/W), while the
actual model view of a spot is in realistic colors.

to identify. The agents then decide whether to deviate left or
right from their predefined trajectory, to accelerate, to deceler-
ate, or even to stop. The agents can then decide to return to their
predefined trajectory (if road conditions permit), or to continue
along a new trajectory.

SAFEPED makes it possible to set decision-making priorities
that reflect traffic rules and agreements at every intersection of
agents’ trajectories. SAFEPED assigns a priority level to each
agent, and when two agents approach the point of intersection of
their trajectories and notice each other, they both know that the
agent with the higher priority will react before the other one. For
example, in Figure 1, pedestrians have higher priorities when
crossing the road than vehicles, and vehicles driving along the
main street have priority over vehicles merging from the right
(highlighted parts of trajectories). Note that the priority system
includes the case when the higher priority agent decides that
the other agent is moving too fast, and decides to slow down or
stop and give way to the other agent. If the trajectories of two
agents intersect and priorities are not assigned, both agents know
there are no priorities, and the agent reacting first is selected
randomly.

Agents’ Microbehavior in Conflict Situations

Road safety in dynamic environments requires motion plan-
ning where vehicles and pedestrians should avoid dynamic and
static obstacles. Motion planning and obstacle avoidance in
robotics use velocity space (VS), also known as the velocity ob-
stacle (VO), instead of the standard 3D “configuration space.”
The problem of avoiding one or many mobile or immobile ob-
stacles is treated in the velocity space. In our model, vehicle and
pedestrian agents follow a robotic motion-planning algorithm
for dynamic environments as originally proposed in (Fiorini
& Shiller, 1998). Further improvements algorithms include the
Reciprocal Velocity Obstacle (Snape et al., 2011) and the Hy-
brid Reciprocal Velocity Obstacle (Van den Berg et al., 2008).
The Reciprocal Velocity Obstacle algorithms incorporate the
reactive nature of all agents by allowing each agent to assume
that the other agents involved in the scene reciprocate by taking
measures to avoid collision, instead of one agent taking all the
responsibility for avoiding a collision (as is the case in the tradi-
tional velocity obstacle). Drivers and pedestrians aim to follow
their predefined trajectories (different for each agent) with min-
imal deviation. A critical advantage of these algorithms is their
applicability to a set of objects that essentially vary in their in-
herent velocities, in our case vehicles and pedestrians. Another
critical advantage of all velocity obstacle algorithms is the time
horizon. This parameter defines the possible future locations of
the agents based on their current location and velocity. Time
horizon has a major effect on the possible safe trajectories that
avoid a crash. Various ranges of time horizon can be easily
applied and tested in SAFEPED.

The basic algorithm considers the velocity obstacle
(VO)—the set of all velocities of a moving object that will

intelligent transportation systems vol. 19 no. 1 2014
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66 G. WAIZMAN ET AL.

Figure 1 SAFEPED model scene showing agents’ trajectories. Dashed and dotted lines represent vehicle and pedestrian trajectories, respectively. Highlighted
intervals represent the areas of possible interactions between vehicles and pedestrians and the priorities.

Figure 2 An example of the avoidance maneuver algorithm as implemented in the SAFEPED according to Fiorini and Shiller (1998), where more details can be
found.

intelligent transportation systems vol. 19 no. 1 2014
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ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 67

result in a collision with another moving object at some
moment in time, assuming that the other objects maintain their
current velocity. In our model, the concept of VO is applied
for computation of avoidance maneuvers, including steering,
accelerating, and decelerating (Figure 2).

In Figure 2a, car A is moving at a velocity VA, and car B at
VB. Car A is trying to avoid collision with car B by changing
its velocity (speed and/or direction), while car B maintains its
original velocity. The white sector (SAB) in Figure 2a, defined
by Fiorini and Shiller (1998) as the collision cone, denotes the
set of relative velocities VAB of car A relative to car B that would
result in a collision within a time horizon �t. In other words,
any relative velocity vector of car A relative to car B within SAB

would result in a collision if car B maintains its original veloc-
ity. SAB is constructed in the configuration space, taking into
consideration the physical dimensions of each car (represented
by the radius of the circumference circles of each car). This is
done by reducing car A to a dimensionless point, and enlarging
the radius of car B to the sum of the original radii: A + B. The
gray sector SA denotes the domain of the absolute velocities of
car A that leads to a collision with car B. SA is a simple linear
transformation of SAB along VB. In Figure 2b, the dashed do-
main, MA, denotes the set of available velocities of car A based
on its possible maneuvers within the given time horizon �t.
This domain considers the possible accelerating/deceleration,
as well as steering maneuvers of car A for the given initial
conditions. The dark gray sector in Figure 2b, SMA, represents
all possible avoidance maneuvers of car A that guarantee no
collision. This sector is constructed by subtracting the velocity
obstacle domain that results in a collision (SA) from the domain
MA of all possible maneuvers of car A. Point S in Figure 2b
denotes a safe avoidance velocity for car A that does not re-
quire a change in the car steering, using its maximal speed.
If accident avoidance demands maneuvers that are beyond
the cars’ capabilities, SMA domain vanishes, and an accident
occurs.

The case shown in Figures 2a and 2b involves two cars.
However, this algorithm can be easily extended for several cars,
by constructing the safe sector as a subtraction of the cars’
possible maneuvers domain from all other velocity obstacle
domains of all other vehicles (Figure 2c). In their article, Fiorini
and Shiller (1998) describe a global search algorithm, as well
as heuristics, which constructs a safe trajectory among multiple
moving objects using the maximal velocity.

Agents’ Vision

SAFEPED agents see the 3D environment within the “view
cone” of up to 180◦ angle, shown as gray sectors in Figure 3a.
We interpret the human visual system as a pinhole camera. The
3D shape (currently a minimal 3D box) of each object within the
view cone is projected on the retinal plan of the agent’s “eye”
(Figure 3b).

Each agent detects objects within its view cone and reacts
to them according to the behavior model. SAFEPED defines
which objects are obscured by others, and to what degree. We
use various levels of transparency of agents’ bodies to present
the obscurity of the agents. Figure 3b presents the scene from
the point of view of the driver of the car, marked by the cross in
Figure 3a. For entirely obscured agents, only bounding boxes
are shown.

Any object that is either fully obscured or beyond an agent’s
view for a certain time becomes invisible to that agent. From
that moment on, these objects do not affect the agent’s behavior.
This aspect of agents’ behavior refers to the organization of
the human visual short-term memory (VSTM), which is able to
store up to 7 ± 2 items (Miller, 1956). The old items decay over
time until they are fully erased. Retention period of the VSTM
decreases as the number of items increases, varying from 3 to
20 sec (Peterson & Peterson, 1959). However, some researchers
show a reduced retention period of 2 sec (Muter, 1980, 1995).
In SAFEPED, we consider the worst case, and assume that the
retention period is 2 sec only.

Agents’ Behavior Models

Behavior models distinguish between three levels of decision
making: strategic, tactical, and operational (Robin et al., 2009).
Decisions on motion destinations and motion activities are cho-
sen at the strategic level and are irrelevant for SAFEPED, whose
scope is limited to a small area of potential vehicle–pedestrian
conflict, such as a crosswalk and its surroundings.

The order of an agent’s activities, including route selection,
is defined at the tactical level (Robin et al., 2009). SAFEPED
generates traffic accident scenarios and the user can draw
routes for pedestrians and vehicles, or import route coordi-
nates as an ASCII file. The user assigns agents to the routes
and schedules their appearance at the starting point of the
route.

The behavior model of SAFEPED reflects agents’ opera-
tional decision making during their motion through the area. It
consists of two fundamental components:

Steering: A path-following algorithm guides the agents
according to Newtonian mechanics, as close as possible to a
predefined route. Agents follow collision avoidance algorithms
(discussed later) to minimize maneuvers. This is done by min-
imizing the vector sum of lateral (steering) and longitudinal
(braking or acceleration) forces.

Cognition-perception: This component reflects human limi-
tations in sensing the environment, interferes with the steering
algorithm, and deteriorates its performance. SAFEPED follows
recent research of the drivers’ and pedestrians’ behavior and al-
lows activating, deactivating, and specifying the following three
cognitive-perceptual characteristics:

• Visibility: The angle of the agent’s view (Atchley & Dressel,
2004; Strayer & Johnston, 2001) is established, as well as the

intelligent transportation systems vol. 19 no. 1 2014
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68 G. WAIZMAN ET AL.

Figure 3 SAFEPED scene of (a) the agents’ view cones, where the car marked by a cross is chosen for follow-up, and (b) 3D visibility in the driver’s view from
the car.

threshold level of an obstacle’s visual exposure that is required
by the agent in order to identify and classify the object.

• Short-term visual memory decay: How long the agent remem-
bers an object that becomes obscured.

• Time delay in reaction: The minimal and maximal delay in
reaction of drivers and pedestrians to a road situation. The
distribution of agents’ reaction time within the [min, max]
interval is assumed to be uniform.

• Pedestrian’s gap acceptance: The probability that the pedes-
trian will cross the road as dependent on the time required
for an approaching car to cross the pedestrian’s path. This

can also depend on the pedestrian’s accumulated waiting time
(Papadimitriou et al., 2009), age, and the number of pedestri-
ans waiting to cross the road (Wang et al., 2010).

All behavior parameters are defined in SAFEPED for each
agent at the individual level.

SAFEPED User Interface and Output

SAFEPED implements Microsoft’s Single Document Inter-
face concept, and its scenes serve for establishing the spot’s 3D

intelligent transportation systems vol. 19 no. 1 2014
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ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 69

Figure 4 Video snapshot of the road-crossing event (a) versus snapshots of the SAFEPED simulation (b) taken at the same moments.

surface model and the agents’ trajectories, which can be edited
using the SAFEPED graphical user interface (GUI):

• Surface can be imported into SAFEPED in the Microsoft
Direct X (∗.x) format. Usually, a surface is presented by the
Digital Terrain Model (DTM) and overlapping orthophoto.

• Drivers’ and pedestrians’ trajectories can be drawn within
the SAFEPAD or imported in an ASCII format. Usually,
these are planned and drawn for creating potential accident
situations.

• Parked vehicles are placed along the agents’ trajectories with
the help of the SAFEPED tool. The user can select the type of
parked vehicle from a list of available models: buses, trucks,
minivans, minibuses, private cars, and motorcycles.

Agents’ actions are recorded at every time step, and can be
analyzed and replayed. The model keeps track of an agent’s loca-
tion, set of available velocities, eye-sight behavior, decisions on
velocity, distance to other agents, and acceleration. All types of
accidents between the agents (i.e., head-on collision, one-sided
collision, car-pedestrian collision, etc.) are also registered. The
performance of SAFEPED remains very high in all experiments,

in which up to a hundred of simultaneously moving agents
were simulated. The movies that present the general view of the
pilot version of SAFEPED, formalization of visibility, and traf-
fic accidents are presented on YouTube.2

SAFEPED VALIDATION AND VERIFICATION

To validate SAFEPED, we compare the performance of the
real and simulated agents in a road-crossing event in which
two pedestrians cross the road in front of an approaching car.
The comparison is based on analysis of a video record of the
event. For SAFEPED verification, we qualitatively compare the
performance of agents in two simulated scenarios in which the
driver agents, subject to road constraints, must react to crossing
pedestrians in order to prevent a collision.

2See http://www.youtube.com/watch?v=ia3W8oiTVYw&feature=related,
http://www.youtube.com/watch?v=6KFcfFRElt8&feature=related, and http://
www.youtube.com/watch?v=axWEGNetpM0

intelligent transportation systems vol. 19 no. 1 2014
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70 G. WAIZMAN ET AL.

Figure 5 Distant (a) and close (b) view of the trajectories of pedestrians and
the car extracted from the video clip (gray) and simulated by the SAFEPED
(white).

SAFEPED Validation Using Real-World
Video Records

Validation of SAFEPED is based on a comparison be-
tween real and simulated movement of drivers and pedestri-
ans. The real movement is represented by a series of video
clips recorded by two synchronized cameras—close-range for
pedestrians and far-range for vehicles. The data are recorded
at a frequency of 2 Hz (every 0.5 sec). A network of control
points acquired with the Leica GPS9000 RTK Survey System
(0.02 m accuracy) is used for transformation of object coor-
dinates in the video frame to a world coordinate system. The
road-crossing event (Figure 4) is modeled in SAFEPED using
high-resolution (0.1 m) orthophoto. The data extracted from the
video include time stamp and world coordinates of the pedes-
trians and the car that are further used for calculating agents’
speeds.

In the simulation, the agents start moving at the same mo-
ment and at the same speeds as in reality. From then on, the
simulated agents react according to SAFEPED’s models, and
the car reduces its speed before the crosswalk while pedestrians
complete crossing. The real and simulated trajectories of the car
and two pedestrians are presented in Figure 5.

Locations and speeds of the car and pedestrian as calcu-
lated based on the video clips were then compared to data gen-
erated by SAFEPED. Table 1 summarizes the results of this
comparison.

Let us analyze the differences between the trajectories in
more detail. In the following, the trajectories are compared

Table 1 Statistics of the difference between the location and speed of the
agents at the same time as recorded in the video and simulated by the
SAFEPAD.

Difference in location (m), Difference in speed (m/sec),
average and STD average and STD

Car 1.94 (1.44) 0.51 (0.66)
Pedestrian 1 0.79 (0.60) 0.75 (0.67)
Pedestrian 2 0.73 (0.34) 0.56 (0.27)

starting from the moment an agent commences moving and
ending at the moment the pedestrians and the car do not react
to each other anymore: seconds 9.0–17.5 for the car, and sec-
onds 11.5–17.5 and 12.0–17.5 for Pedestrian 1 and Pedestrian 2,
respectively.

The Car

According to Figure 6, the real driver reacts to the pedestrians
about 1 sec before the simulated driver. The SAFEPED driver
agent behaves more smoothly than the real one and does not
accelerate in the beginning of the period (second 10.0), before
both real and simulated driver slow down. Different from reality,
a SAFEPED driver drives essentially more slowly during the
slow phase of driving, seconds 14.5–16.5.

The average difference in locations, at the same moment of
time, between the real and simulated cars is 1.94 m (STD =
1.44 m), and varies between 0.5 and 3.3 m. The time that is
necessary to cover this distance is between 1 and 2 sec for the
slowest part of the trajectory (seconds 15.5–17.0), while for the
higher speeds this time is below 0.5 sec, lower than the full
driver’s reaction time of 0.7 sec (Green, 2000).

Pedestrians

The real and simulated trajectories of Pedestrian 1 are very
close during the first half of the event and diverge, having similar
bending, during the second part (Figure 5b). The first pedestrian
is closer to the approaching car than the second one and is forced
to maneuver urgently, while the second pedestrian goes behind
the first one and reacts less impulsively. As shown in Figure 7,
both in the video and in simulation, Pedestrian 1 accelerates
to a speed of 1.8 m/sec at the beginning of the trajectory, and
then slows down to 0.5–1 m/sec. Model Pedestrian 1 slows
down at second 13.5, 1.5 sec before the real pedestrian (sec-
ond 14.0). The average difference in locations is about 0.8 m
(STD = 0.6 m).

According to the video record, Pedestrian 2 follows Pedes-
trian 1 (Figure 8). This line of action does not require excessive
maneuvering and results in high similarity of captured and simu-
lated trajectories (Figure 5b). The average difference in locations
is 0.73 m (STD = 0.34 m).

To summarize, the agents’ movements in the SAFEPED sim-
ulation fit well to the reality, while presenting some differences
that can be attributed to the lack of “human” properties, such

intelligent transportation systems vol. 19 no. 1 2014

D
ow

nl
oa

de
d 

by
 [

T
el

 A
vi

v 
U

ni
ve

rs
ity

] 
at

 0
4:

56
 0

3 
M

ar
ch

 2
01

5 



ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 71

Figure 6 The speed of the car in reality and in the SAFEPED simulation.

Figure 7 The speed of Pedestrian 1 in reality and in the SAFEPED simulation.

Figure 8 The speed of Pedestrian 2 in reality and in the SAFEPED simulation.
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72 G. WAIZMAN ET AL.

Figure 9 One-lane (a) and two-lane (b) scenarios.

as driver’s caution or pedestrian unwillingness to walk quickly.
These properties can be estimated based on the analysis of the
video clips, and this will be the next step of the SAFEPED
validation.

Qualitative Verification

We qualitatively verified SAFEPED by simulating poten-
tial vehicle–pedestrian accident scenarios in which the driver
noticed the pedestrian crossing the road shortly before the po-
tential collision. In our experiments, if the driver does not react,
the car will inevitably hit the pedestrian.

In the first series of simulations, we consider a one-lane nar-
row road where the driver is not able to steer and the accident
can be avoided only by braking (Figure 9a). In the second sce-
nario, the car drives along a two-lane road and can brake and
steer (Figure 9b). The pedestrian crosses perpendicularly to the
road at a speed of 3.5 km/h and does not react to the approaching
vehicle. The driver detects the crossing pedestrian 1.6 sec or less
before the potential crash (alert time).

In our scenarios, the car’s initial speed varies from 50 to
20 km/h and alert time between 1.6 and 0 sec. According to
the 100-Car Naturalistic Driving Study (Klauer et al., 2006a)
we limit the car’s acceleration/deceleration in our scenarios to
6.0 m/sec2.

Tables 2a and 2b (one-lane road) and 3a and 3b (two-lane
road) show the minimal distance between the car and pedestrian
(zero value represents a collision) and the minimal speed of the
car observed during the simulation in the two scenarios.

According to the results of the first experiment (Tables 2a
and 2b), there is a strong correlation between the car’s speed
and the minimal time alert time for the driver to avoid the acci-
dent. As in reality, the driver stops or slows down on identifying
the pedestrian, depending on the distance to the pedestrian and
the minimal distance between the car and pedestrian is about
1.5–2 m (Table 2a), regardless of the initial car speed. Note
that according to the conditions of the experiment, cars mov-
ing more slowly identify the pedestrian closer to the point of
potential collision in comparison to cars moving more quickly.
Consequently, cars moving more slowly (20–25 km/h) always
stop in order to avoid a collision, while the drivers of the
cars moving more quickly have sufficient time to decelerate
and let the pedestrian cross the road, without stopping the car
(Table 2b).

The second experiment demonstrates that on a wider road,
where the driver can steer, the minimal alert time necessary
to avoid the accident is 0.4–0.5 sec (Table 3a), shorter than in
the case of the single-lane street (Table 2a). Moreover, we can
see that steering is the driver’s last-choice solution in the case
of a short alert time only. Indeed, no matter what the initial
speed of the car is, for the longer alert times, say up to 1.3
sec in case of an initial speed of 50 km/h, the driver brakes
and stops (Table 3b). The driver only steers for the shorter alert
times. Note that steering helps to avoid the accident for the
alert times that would inevitably result in a collision on the
narrow road. In case of an initial speed of 50 km/h, this addi-
tional interval is 1.1–0.8 sec. Just as in the scenario of narrow
road, the drivers of cars moving more slowly identify pedes-
trians crossing the road closer to the point of possible colli-
sion, and their ability to avoid a collision by steering is limited
in comparison to the drivers of cars that initially move more
quickly.

Table 2a Simulated scenario 1, minimal distance (m) between the car and the pedestrian.

Alert time (sec)

1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Car
speed
(km/h)

50 1.63 1.61 1.86 1.62 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
45 1.66 1.60 1.64 1.67 1.55 1.35 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 1.64 1.65 1.68 1.64 1.77 1.63 1.18 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
35 1.67 1.68 1.70 1.64 1.69 1.56 1.73 1.21 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 1.46 1.68 1.99 1.82 1.64 1.65 1.56 1.64 1.25 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 1.49 1.66 1.67 1.58 1.70 1.66 1.66 1.57 1.51 1.07 0.24 0.00 0.00 0.00 0.00 0.00 0.00
20 1.45 1.66 1.77 1.65 1.65 1.56 1.33 1.26 1.54 1.38 0.80 0.36 0.00 0.00 0.00 0.00 0.00
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ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 73

Table 2b Simulated scenario1, minimal speed (km/h) of the car.

Alert time (sec)

1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Car
speed
(km/h)

50 2.5 2.4 0.0 0.0 0.0 0.2 15.9 21.4 26.9 29.7 34.3 37.0 39.8 42.6 45.3 47.2 50.0
45 2.7 2.7 2.8 0.0 0.0 0.0 0.0 13.6 19.1 24.7 27.4 32.0 33.9 37.6 39.4 43.1 45.0
40 2.3 1.8 2 1.9 0.0 0.0 0.0 0.0 13.2 17.8 23.4 26.1 29.8 32.6 35.3 37.2 39.9
35 1.7 0.0 1.3 2.1 0.0 0.0 0.0 0.0 0.0 11.0 15.6 21.1 23.9 27.6 29.4 32.2 34.9
30 3.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 15.2 18.0 22.6 24.4 28.1 29.9
25 1.7 0.0 0.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 13.9 16.7 20.3 22.2 24.9
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 10.7 14.4 17.2 20.0

CASE STUDY OF A DANGEROUS ROAD SITUATION

To test SAFEPED we investigate one of the most hazardous
scenarios at a crossroad: A high vehicle obscures part of the road
from the pedestrian who has started crossing. An essential part of
the road is hidden from the pedestrian’s view, while an essential
part of the sidewalk, including the starting point of the cross-
walk, is hidden from the driver’s view. A U.S. Transportation
Agency publication (Hunter et al., 1997) describes this situation
as follows. “The pedestrian entered the traffic lane at midblock
in front of standing or stopped traffic and was struck by another
vehicle moving in the same direction as the stopped traffic.” Ac-
cording to Zegeer et al. (2005), multiple-threat crashes comprise
17.6% of pedestrian collisions on marked crosswalks.

Experimental Setup

The experimental setup is presented in Figure 10: High truck
A stops in the right lane of a two-lane road, and the pedestrian’s
view of the road is obscured. No traffic lights are installed. The
pedestrian decides to cross the street, based on her own estimate
of the traffic conditions. The pedestrian is obscured from the
view of the driver of Vehicle B approaching the crosswalk along
the left lane. If the pedestrian and the car continue with their
current velocities and trajectories, an accident will occur at a
point marked by the star (point C).

A real road crossing was chosen for the 3D representa-
tion of junction infrastructure, and we investigate the accident

situations for three different locations of the obscuring truck:
at a distance of 0.75, 2.25, and 3.75 m from the crosswalk
(Figure 11).

We investigate the risk of contact between a car in the lane
adjacent to the truck and the pedestrian (the pedestrian being
hit by the car’s right fender) (Figure 12), as dependent on the
velocities and the reaction/attention times of the driver and the
pedestrian. According to Hoogendoorn et al. (2005), we set
the pedestrian reaction time as 0.28 ± 0.07 sec and the driver
reaction time as 0.70–0.75 sec (Green, 2000). The reaction times
include all possible components that affect the reaction, among
them 0.2 sec required to lift the foot from the accelerator and
touch the brake pedal. We use 0.28 – 0.07 = 0.21 sec as the
reaction time of a slowly reacting pedestrian and 0.28 + 0.07 =
0.35 sec as the reaction time of a quickly reacting pedestrian.

Individual Accident Avoidance

Let us investigate the conditions in which the pedestrian or
the driver is capable of avoiding a collision, even if the other
participant chooses the worst line of action.

We start with an inattentive pedestrian who does not look
around and start crossing the street at a high speed of 6 km/h
(Table 4). For the situation where the truck is stopped 0.75 m
from the crosswalk, the attentive car driver identifies the pedes-
trian and stops safely when the car’s speed is lower than 12 km/h
for the slowly reacting pedestrian, and 13 km/h for the quickly
reacting pedestrian. When the truck is stopped 2.25 and 3.75 m

Table 3a Simulated scenario 2, minimal distance (m) between the car and the pedestrian.

Alert time (sec)

1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Car
speed
(km/h)

50 1.5 1.5 1.5 1.6 0.8 0.8 0.8 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
45 1.6 1.6 1.4 1.5 1.6 1.0 0.9 0.9 0.8 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0
40 1.6 1.6 1.5 1.5 1.5 1.5 1.0 0.9 0.9 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0
35 1.6 1.7 1.7 1.6 1.5 1.6 1.4 1.2 1.2 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0
30 1.6 1.5 1.6 1.5 1.8 1.8 1.6 1.4 1.9 1.7 1.7 1.5 0.7 0.0 0.0 0.0 0.0
25 1.5 1.6 1.6 1.6 1.5 1.6 1.5 1.6 2.0 1.7 1.4 1.3 0.0 0.0 0.0 0.0 0.0
20 1.5 1.5 1.8 1.6 1.4 1.4 1.3 1.3 1.4 1.1 1.0 0.4 0.0 0.0 0.0 0.0 0.0
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74 G. WAIZMAN ET AL.

Table 3b Simulated scenario 2, minimal speed (km/h) of the car.

Alert time (sec)

1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Car
speed
(km/h)

50 4.4 3.6 5.0 0.0 31.6 32.5 32.5 33.4 34.4 29.7 34.3 37.1 39.9 42.6 45.4 47.2 50.0
45 4.0 3.8 6.6 3.7 0.0 28.4 28.4 29.4 30.3 30.4 33.0 32.1 33.9 37.6 39.5 43.2 45.0
40 2.8 2.2 4.0 2.9 0.9 0.0 24.3 25.8 26.2 27.1 28.7 26.2 29.9 32.6 35.4 37.2 40.0
35 2.0 1.2 1.0 1.5 0.9 0.0 0.0 22.1 22.1 23.0 24.0 25.8 24.5 27.6 29.5 33.2 35.0
30 2.3 2.1 1.2 0.9 0.0 0.0 0.0 3.2 20.8 19.9 21.4 20.0 21.7 22.6 24.5 27.2 30.0
25 2.0 1.5 1.1 1.1 1.0 0.0 0.0 0.0 18.6 18.6 19.5 18.6 13.0 16.7 20.4 22.2 25.0
20 2.1 0.9 0.0 0.0 1.9 0.8 0.0 0.0 0.0 9.6 12.9 0.0 7.1 10.8 15.4 17.2 20.0

Figure 10 Experimental setup: High truck A stops at the side of a crosswalk and obscures the view of both the approaching driver (B) and the walking
pedestrian (C).

Figure 11 Three experimental situations: The truck stops at a distance of 0.75 m (a), 2.25 m (b), and 3.75 m (c) from the crosswalk border.

Figure 12 Car’s right fender hits pedestrian when truck is parked 0.75 m from the crosswalk.
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ASSESSING THE RISK OF VEHICLE–PEDESTRIAN ROAD ACCIDENTS 75

Table 4 Maximal safe vehicle speed for attentive driver and inattentive
pedestrian crossing the road at a speed of 6 km/h as dependent on the distance
between the obscuring truck and the crosswalk.

Distance between the obscuring
truck and the crosswalk

Pedestrian’s reaction 0.75 m 2.25 m 3.75 m

Slow 12 km/h 24 km/h 26 km/h
Fast 13 km/h 25 km/h 28 km/h

from the crosswalk, the car driver succeeds in preventing the
accident if the car’s speed is below 24–28 km/h.

The results for the case of an inattentive driver who drives
at a speed of 50 km/h and an attentive pedestrian who slows
down when crossing a road are presented in Table 5. To avoid
an accident, in case of a truck stopped at 0.75 m, the velocity of
the slowly reacting pedestrian should be below 3.7 km/h, while
the velocity of the quickly reacting pedestrian should be below
4.6 km/h (Table 5). When the truck is stopped further from the
crosswalk, the pedestrian is capable of detecting the car at any
reasonable walking speed.

The Situation in Which Both Participants Have to React

Figure 13 presents the relation between maximal safe speeds
of the car and the pedestrian for inattentive and attentive
agents when the obscuring truck is stopped 0.75 m from the
crosswalk.

Table 5 The maximal safe speed of attentive pedestrian in the case of an
inattentive driver moving at a speed of 50 km/h.

Distance between truck
and crosswalk

Pedestrian’s reaction 0.75 m 2.25 m 3.75 m

Slow 3.7 km/h 5.1 km/h Above 6.0 km/h
Fast 4.6 km/h 6.0 km/h Above 6.0 km/h

As can be seen from the chart, the pedestrian’s reaction is
critically important for avoiding the accident. The slowly re-
acting attentive pedestrian will be in danger if the car’s speed
is above 20 km/h, while for the quickly reacting pedestrian the
dangerous speed is above 35 km/h. Note that in order to avoid
a crash regardless of the car’s speed, the pedestrian should not
walk faster than 2 km/h.

Tables 4 and 5 and Figure 13 are based on estimating the
moment of physical contact between the pedestrian and the car.
Safety recommendations require significant nonzero distance
between the car and pedestrian during the entire period of their
interaction. In order to meet these requirements, we must include
essential margins to the estimates presented in Tables 4 and 5
and in Figure 13. Let us estimate these margins.

Margins for Safe Avoidance of Crash

We define a road situation as “safe” if the driver and the
pedestrian avoid an accident by passing next to each other at a
distance of 0.5 m, and present the case of the truck stopped at
0.75 m only, and the worst case for the slowly reacting pedes-
trian. As can be seen from Table 6, the safe speeds are essentially
lower than obtained in the previous section.

Our results can be compared to the results of the Pedes-
trian Safety Countermeasure Deployment Project—a 6-year
field study of the effectiveness of different safety installations
at pedestrian crossroads, depending on the crosswalk’s poten-
tial for vehicular–pedestrian collision (Redmon, 2011). Among
other modifications, the advanced stop line, marked 4–10 feet
(1.2–3.0 m) before the crosswalk and aimed at discouraging
motorists from entering the crosswalk, was tested at 14 San
Francisco intersections. The effectiveness of this line was esti-
mated based on video records and interviews with pedestrians,
and the authors conclude that wider study is necessary con-
cerning the stop-line effectiveness. Our simulations add to this
study and are not affected by the interviewees’ subjective ex-
perience: The advanced stop line is more effective if marked
even further away—at 3.5 m before the crosswalk, which

Figure 13 The relation between maximal safe car and pedestrian speeds when the obscuring truck is stopped 0.75 m from the crosswalk.
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76 G. WAIZMAN ET AL.

Table 6 Minimal distance between car and slowly reacting pedestrian for the truck stopped 0.75 m from the crosswalk.

Car’s speed, km/h

Pedestrian’s speed, km/h 50 45 40 35 30 25 20

5.5 crash crash crash crash crash crash 0.17
5.0 crash crash crash crash crash 0.06 0.16
4.5 crash crash crash crash 0.10 0.19 0.29
4.0 crash crash crash 0.08 0.08 0.26 0.36
3.5 0.04 0.04 0.06 0.10 0.18 0.28 0.47
3.0 0.10 0.09 0.11 0.20 0.26 0.36 0.45
2.5 0.22 0.20 0.47 0.71 1.05 1.08 0.47
2.0 0.94 1.14 1.00 0.99 1.01 1.02 0.42

Note. “Crash”—zero distance, shaded cells—unsafe speeds (distance between the car and pedestrian below 30 cm—half the width of the human body);
boldface—pedestrian can avoid accident on his or her own.

is greater than the maximal distance investigated in Redmon
(2011).

SUMMARY

We presented SAFEPED—a multi-agent, microscopic 3D
simulation of car and pedestrian dynamics at black spots.
By direct assignment of human-based behavioral rules to the
model agents, SAFEPED is capable of arbitrarily implementing
cognitive-perceptual parameters of driver and pedestrian behav-
ior, including strategic and tactical behavioral components. The
high temporal and spatial resolution of SAFEPED, similar to
those of driver simulators and real-time in-car equipment, pro-
vides high potential for combining it with data from field studies
(Kiefer et al., 2003; Klauer et al., 2006a, 2006b; Najm & Smith,
2004; Smith et al., 2003). SAFEPED can serve as a tool for
assessing accident risks at specific spots, and can identify safety
measures to minimize these risks.

SAFEPED can serve as a sophisticated tool for assessing
modifications to existing and hypothetical black spots, identi-
fying those safety countermeasures that will provide maximum
road safety benefits. The model does not propose safety mea-
sures, but estimates the results of their implementation. For ex-
ample, our model can help in testing the usefulness of the safety
measures and in establishing priorities in their implementation.

Future developments of SAFEPED include adding more
complex behavior models for agents, allowing for factors such
as age, alcohol consumption, physical disabilities, and so on, and
examining their effect on agents in black spots. SAFEPED can
also be applied to road safety research on specific hazardous
spots, such as crosswalks near schools, allowing researchers
to see the scene from the viewpoint of a child and to exam-
ine the effect of various parameters on children’s behavior in
crosswalks.
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